

Dakshina Bharatha Mahila Samaja Premises, Whitefield Railway Station Road, Kadugodi, Bangalore - 560067

GRADE X	Mathematics	Date : 16/11/2022
Time Allowed: $\mathbf{1}$ Hrs	UNIT TEST	Max Marks: $\mathbf{3 0}$

General Instructions :

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 3 MCQ's and 01 Assertion-Reason based questions of 1 mark each.
3. Section B has 3 Very Short Answer (VSA)-type questions of 2 marks each.
4. Section C has 2 Short Answer (SA)-type questions of 3 marks each.
5. Section D has 2 Very Long Answer (VLA)-type questions of 5 marks each.
6. Section \mathbf{E} has 1 Long Answer (LA)-type question of 4 marks each.

SECTION A

(Multiple Choice Questions) Each question carries 1 mark

1. If one zero of the quadratic polynomial $x^{2}+3 x+k$ is 2 , then the value of k is
a) 10
b) -10
c) 5
d) -5
2. If 2 and $1 / 2$ are the zeros of $p x^{2}+5 x+r$, then
a) $\mathrm{P}=\mathrm{r}=2$
b) $\mathrm{p}=\mathrm{r}=-2$
c) $\mathrm{p}=2, \mathrm{r}=-2$
d) $\mathrm{p}=-2, \mathrm{r}=2$
3. How many zeros are there for the given polynomial?

a) 0
b) 1
c) 2
d) 3

ASSERTION-REASON BASED QUESTIONS

In the following questions, a statement of assertion (A) is
followed by a statement of
Reason (R). Choose the correct answer out of the following choices.
(a) Both A and R are true and R is the correct explanation of (A)
(b) Both A and R are true but R is not the correct explanation of (A)
(c) A is true but R is false.
(d) A is false but R is true.
4. Assertion (A): In a circle of radius 6 cm , the angle of a sector is 60°. Then the area of the sector is $132 / 7 \mathrm{~cm}^{2}$

Reason (R): Area of the circle with radius r is πr^{2}.

SECTION B

This section comprises of very short answer type-questions (VSA) of 2 marks each

5. Find a quadratic polynomial with the given numbers are the sum and product of its zeros respectively $-1 / 4,1 / 4$
6. The circumference of a circle is 22 cm . Calculate the area of its quadrant (in cm^{2}).
7. In the Figure, PQ and AB are respectively the arcs of two concentric circles of a radii 7 cm and 3.5 cm and centre O. If $\angle \mathrm{POQ}=30^{\circ}$, then find the area of the shaded region.

OR
Find the area of the major segment APB, in the figure of a circle of radius 35 cm and $\angle A O B=90^{\circ}$. (Use $\pi=22 / 7$)

SECTION C

(This section comprises of short answer type questions (SA) of $\mathbf{3}$ marks each)
8. Write the zeros of the quadratic polynomial $f(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$

OR
Find the zeros of the $8 x^{2}-4$ and verify the relationship between the zeros and the coefficients.
9. An umbrella has 8 ribs which are equally spaced. Assuming umbrella to be a flat circle of radius 45 cm , find the area between the two consecutive ribs of the umbrella.

SECTION D

(This section comprises of very long answer-type questions (VLA) of 5 marks each)
10. A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope .

Find (i) the area of that part of the field in which the horse can graze.
(ii) the increase in the grazing area if the rope were 10 m long instead of 5 m .
(Use $\pi=3.14$)

11. In the given fig, APB and CQD are semi circles of diameter 7 cm each, while ARC and BSD are semicircles of diameter 14 cm each. Find the perimeter of the shaded region. (Use $\pi=22 / 7$)

OR

In Figure, two concentric circles with centre O, have radii 21 cm and 42 cm . If $\angle \mathrm{AOB}=60^{\circ}$, find the area of the shaded region. [Use $\pi=22 / 7$]

SECTION E
(This section comprises of long answer-type questions (LA) of 4 marks each)
12. Find the area of the segment AYB shown in Fig., if radius of the circle is 21 cm and $\angle \mathrm{AOB}=120^{\circ}$. (Use $\pi=22 / 7$)

